
Lab-based Action Design Research
Paul Ralph

Lancaster University
Lancaster UK

paul@paulralph.name

ABSTRACT
This paper proposes a research methodology, Lab-based Action
Design Research, which combines organizational intervention
(action research), building innovative artifacts (engineering
research) and studies of software development practice
(behavioral research) within a laboratory environment. Seven
principles for successful Lab-based Action Design Research are
proposed – attract funding with a win-win scenario; select
inspiring projects; conduct simultaneous studies; mix methods;
use longitudinal, quasi-experimental designs; use enterprise-level
technical infrastructure; use established project management
infrastructure. Initial evaluation indicates that the proposed
approach is practical and may produce improvements in internal
validity and theoretical generalizability.

Categories and Subject Descriptors
D.2.8, D.2.9, D.2.10 [Software Engineering]: Metrics,
Management, Design.

General Terms
Design, Measurement, Experimentation, Human Factors, Theory.

Keywords
Methodology, Metrics, Empirical Software Engineering, Design.

1. INTRODUCTION
Diverse software engineering research initiatives are frustrated by
the limitations of conventional lab and field study methods. Field
studies involve real problems, constraints and complexity but
limit researcher control and inhibit establishing causality. Lab
environments meanwhile provide substantial control and good
internal validity but lab studies lasting a few hours or even a few
days cannot capture the complexity of even modest projects,
which occupy several developers for months or years. Even field
experiments rely on either limited experimental controls or rare
natural controls. These limitations may contribute to the
proliferation of papers which formulate processes, methods or
algorithms but exhibit problematic or no evaluation [6, 7, 10, 19].

The complexity-control tradeoff between lab studies (high control,
low complexity) and field studies (high complexity, low control)
highlights the need for a middle-ground (medium control, medium
complexity). This motivates the following, research question.

Research Question: Can a research methodology
practically combine realism and complexity with strong
experimental controls?

Consequently, this paper proposes a novel methodology, termed
Lab-based Action Design Research (LADR). The paper proceeds
by reviewing background on action research and design research
(§2), then describing (§3) and evaluating (§4) LADR and its key
principles. The paper concludes with a summary of its
contributions and suggestions for future studies.

For our purposes, a lab study is any research conducted in a
setting substantially created and controlled by the researcher,
including controlled experiments, quasi-experimental designs and
informal evaluations, regardless of whether participants are
amateurs or professionals. In contrast, a field study is any research
conducted in an organizational setting over which the researcher
has little control, including ethnography, case study and grounded
theory. Meanwhile, a control is an attempt to limit the effect of
one or more variables on a dependent variable or on a relationship
between variables. Finally, a system is complex to the extent that it
exhibits emergent behaviors not evident from its components [2].

2. ACTION, DESIGN, AND ACTION-
DESIGN RESEARCH

Action Research is a type of field study in which “the researcher
enters a real-world situation and aims both to improve it and to
acquire knowledge” [5]. It differs from ethnography in that the
researcher intervenes in the research context to achieve a practical
goal and reflects on this intervention. Action researchers use
participant observation as their primary data collection
mechanism. Action research has been praised for its utility in
practical problem-solving and engaged scholarship [18], but
criticized for researcher bias and lacking rigor [12].

At least three kinds of software engineering studies resemble
action research. First, proof-of-concept field studies where a
researcher deploys a novel tool, algorithm or method in an
organizational setting is a kind of action research. Second, when a
researcher discovers important concepts or evidence during a
consulting project, it can be presented post hoc as action research.
Third, field studies where the researcher has traded consulting for
access may be better presented as action research.

Design Research is the information systems community’s term for
research centered on developing innovative technologies [9].
Seven core guidelines have been proposed – 1) produce an
artifact; 2) address a relevant problem; 3) evaluate the artifact; 4)
provide a clear and verifiable research contribution in the form of
an artifact, a methodology, or design knowledge; 5) construct and
evaluate the artifact rigorously; 6) design artifacts by searching
for the best alternatives; 7) communicate the research in a manner
understandable by both technical and managerial audiences [9].
Design research has been praised for promoting innovation but
criticized for lacking rigor, especially where artifact evaluation is
limited [8].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICSE'14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2756-5/14/05... $15.00.

Design Research is presented as a Waterfall-like sequence of
problem definition, artifact development and evaluation [8].
Recognizing that artifacts are often simultaneously shaped by
researchers and use organizations, Sein et al. proposed Action
Design Research (ADR), where artifact construction,
organizational intervention and artifact evaluation occur
concurrently [17]. They provide seven principles for ADR – 1)
practical problems are addressed; 2) artifact design and evaluation
are informed by theory; 3) artifacts are mutually shaped by the
researcher and the use organization; 4) mutual learning between
researchers and practitioners; 5) concurrent evaluation; 6) treating
design as a process of guiding emergence; 7) generalizing specific
outcomes to problem classes, solution classes and design
principles [17]. Here, “guiding emergence” refers to managing
unpredictable behavior or unintended consequences rather than
pretending the researcher can plan for every contingency.

ADR’s use of concurrent construction, intervention and evaluation
simultaneously hinders researcher control and facilitates
engagement, relevance and realistic complexity. ADR may
therefor provide a suitable foundation for a novel methodology
combining realistic complexity with greater researcher control.

3. LADR PRINCIPLES
Lab-based Action Design Research (LADR) is a research
methodology that combines the organizational intervention of
action research, the artifact-centricity of design research and the
concurrent construction/intervention/evaluation of action design
research with some of the researcher control available in
experimental, lab-based studies. It is characterized by:
1. designing a technological artifact (e.g. a software system) in

a laboratory context where the researcher exerts substantial
control over the project, process and environment

2. intervene in a real-world situation with the designed artifact
3. concurrent development, organizational intervention,

artifact evaluation and reflection on the intervention
4. generating new knowledge about the organization, the

artifact, design practice, or theories thereof

Conducting LADR requires an organization (the lab) comprising
one or more research teams, software development teams,
research projects, development projects, as well as research,
technological and management infrastructure and physical space.
The development teams use the managerial and technological
infrastructure to complete development projects while the
research teams use research infrastructure and the development
projects to complete research projects. Ideally, the lab space is
within the organization where the artifact will be deployed.

The core principles for action design research apply equally to
LADR. This remainder of this section describes seven principles
specific to LADR, based on the study described in Section 4.

3.1 Attract Funding with a Win-Win Scenario
LADR requires moderate funding to cover participant salaries,
infrastructure and research and incidental expenses. While
attracting external grants is ideal, internal funds may also be
available given the right pitch.

Effectively deployed, LADR manifests significant benefits for
diverse stakeholders in the university context. If the development
team is composed of university students, they receive financial
support and relevant work experience. Meanwhile, the university
benefits not only from more experienced graduates (improved
reputation) but also from the software projects the development
team completes (as we select projects based on the university’s
needs). In addition, LADR creates research infrastructure
available to numerous faculty and PhD students. Meanwhile, both

the student-participants and the university benefit from the design
expertise brought to the project by the research team. Construed
this way, modest internal funding may be forthcoming.

3.2 Select Inspiring Projects
Project selection involves balancing the concerns of the funder
and participants with the needs implied by the research questions.
It is tempting to believe that if the primary research question is
about design practice (e.g. does tool X increase developer
productivity?) then the details of the development project are
irrelevant. This is a grievous error. Aside from the importance of
project complexity as a moderating variable, developers quickly
disengage from simple or boring projects (e.g. digitizing paper-
based forms). Selecting an inspiring project also helps to justify
the lab’s funding, create buzz in the organization, attract more and
better participants, and increases potential research output (§3.3).

Moreover, the ideal project is not a simulation but an actual
project for real stakeholders who intend to use the results.
Realistic organizational complexity comes from doing a real
project for a real organization. However, the lab may have less
internal complexity than working in a large or bureaucratic firm.

3.3 Conduct Simultaneous Studies
LADR allows researchers to conduct multiple, separate but
interconnected studies simultaneously. In the simplest instance, at
least two research projects may be combined. First, the
development team may build and evaluate an innovative artifact
that is, itself, a research contribution. Second, the research team
may theorize about some aspect of the development team’s
practice and test the theory. For example, the development team
may be building and evaluating a novel recommender system to
help students select courses; while the research team may be
exploring coevolution behavior [14]. Moreover, multiple studies
may require multiple types of reflection, e.g., reflection on: 1) the
organizational intervention; 2) the design artifact; 3) the
developers and their process; 4) the research method.

3.4 Mix Methods
LADR creates empirical infrastructure that can be leveraged for
diverse studies including experiments and ethnographies as well
as action research and engineering research. Combining several
approaches facilitates data triangulation, mitigates mono-method
bias and may produce deeper insights. For example, simultaneous
theory testing using a (positivist) quasi-experimental design and
related theory-building using an (interpretivist) ethnographic
approach prompts reflection on the same phenomenon through
heterogenous theoretical lenses and philosophical perspectives,
spurring creativity and demanding more nuanced analysis.

3.5 Use Quasi-Experimental Designs
LADR is inherently longitudinal – completing inspiring projects
will require months of sustained effort. Furthermore, the unit of
analysis for many LADR studies will be a project, team, or design
artifact. Therefore, having a control group and enough participants
for cross-sectional statistical analysis may be impractical.

Quasi-experimental, time series studies may mitigate this
limitation. For example, to study whether peer programming
decreases coding errors, we could randomly assign participants to
two groups, have the treatment group code in pairs while the
control group codes individually and comparing the mean error
across the two groups. The same research question might be
studied by randomly assigning days to two groups and having the
team code in pairs on treatment days and individually on control
days, and then comparing means across days.

3.6 Use Enterprise Infrastructure
Keeping track of a LADR project’s data and progress is
challenging. Using sophisticated technical infrastructure may
help. For example, a web application development project may
benefit from an integrated stack involving a version control
system, static analysis tools, testing tools, reporting tools, a
continuous integration server, web hosting and a project
management suite. The data available via the project management
suite and reporting tools forms a convenient set of dependent
variables appropriate for myriad research questions.

3.7 Use Project Management Infrastructure
Unless manipulating project management practices is part of the
research design, adopting as established management approach
may be helpful. For example, mounting evidence indicates that
Scrum [16] is positively related with developer productivity [4].
Scrum may be combined with many best practices including
Extreme Programming [3] and lean engineering [13]. In contrast,
using homegrown or ad hoc development practices may increase
management overhead, distract from research goals and even
negatively impact project success [1].

4. EVALUATION OF LADR
4.1 Conceptual Evaluation
A core benefit of LADR is increased internal validity in studies of
design practices and projects, where LADR allows more
researcher control than a field study. However, internal validity
depends on how LADR is used. Strictly observational approaches
will have validity characteristics similar to that of an ethnography,
while intervention-oriented approaches will have similar validity
to Action Research. However, LADR also supports quasi-
experimental time series designs, which can produce strong
evidence of causality. The primary threat to internal validity for
this design is an unnoticed event occurring contemporaneously
with the treatment, which contributes to the observed effect. The
researcher can mitigate this threat and increase internal validity by
combining the quasi-experimental design with direct observation
or participant observation. Pragmatically speaking, an engaged
researcher should notice such third variables. Additionally, as with
all longitudinal designs, mortality threats may apply.

LADR also has interesting generalizability characteristics.
Generalizability refers to several types of scientific inference [11].
Statistical generalizability, which involves inferring properties of
a population from a representative sample, is rare in software
engineering. Even in survey research, representative sampling is
hindered by the absence a population list from which to sample.
Experiments and field studies rarely support statistical
generalizability, either because the sample size is too low (field
studies) or not representative (experiments). Similarly, LADR
does not facilitate statistical generalizability. However, scientists
also generalize from data to descriptions (DD), from description
to theory (DT), from theory to description (TD) and from
concepts to theory (CT) [11]. Action Design Research involves
DD and DT, specifically “(1) generalization of the problem
instance, (2) generalization of the solution instance, and (3)
derivation of design principles from the design research
outcomes” [17]. Interpretive and exploratory studies
predominately involve DD and DT, i.e., generalizing from
observations. Theory testing studies predominately use DD and
TD – statistical generalization is rarely used without random
sampling. LADR supports DD, DT and CT.

Moreover, LADR should have minimal impact on reliability.
Pseudo-experimental designs with accurate measures should have
relatively strong test-retest reliability while observational studies

will generally have weaker test-retest reliability (as each
researcher will intervene in organizations differently). Reliability
of subjective analyses may be enhanced in by having two
researchers code data independently and computing inter-rater
reliability. The process of reconciling inter-rater disagreement
may further enhance reliability.

Similarly, LADR should have little effect on construct validity.
However, LADR may permit more robust operationalizations of
constructs than are possible in a lab study. For example, if we
hypothesize that peer programming increases team cohesion over
time, a four-hour lab study would limit operationalization of time
compared to a six month LADR study.

From a different perspective, LADR may be more realistic than a
conventional lab study in three ways – 1) realistic timescale; 2)
real projects; 3) realistic complexity. Generalizing from lab
studies to practice is hampered by toy problems, lack of problem
framing, short durations and unrealistic tidiness. LADR results are
intuitively more transferable to real projects because LADR
involves completing real projects. However, LADR teams are
unlikely to have the same internal politics as development firms.

In summary, LADR supports higher internal validity than a field
study (via quasi-experimental time-series designs), but not as high
as a randomized controlled experiment. Inversely, LADR supports
more realistic trials of new technologies than lab studies but not
quite as realistic as field trials. Statistical generalization is not
normally supported by field studies, lab studies or LADR studies.
LADR should have little effect on reliability of construct validity.

4.2 Empirical Evaluation
I conducted a nine-month trial of LADR beginning in Feb 2012.
Briefly, a team of seven undergraduates and postgraduates
developed a mobile application for internal university
stakeholders using a Scrum-like approach [16]. I managed the
team while conducted observational research on design practices,
tools and metrics. This evaluation demonstrates that LADR can be
implemented in practice but does establish its validity.

The lab facilitated substantial data collection including video
recordings of team meetings, audio recordings of stakeholder
consultations and images of diagrams created by the team. All
emails sent within and between team members were archived
using a Google Group. All code, documentation and changes
thereof were recorded using Git revision control. Other documents
created by the team, including user stories, proposals and notes,
were captured using a combination of Google Docs and a shared
Dropbox. As no one system seemed capable of organizing all of
the transcripts, notes, documents and media collected, a
combination of Evernote, iTunes and directories were used with
pointers in Evernote to content in other systems. In hindsight, it
would have been wise to consider data storage infrastructure more
carefully prior to the study.

LADR also facilitated substantial control over the research
environment including the project management framework
(Scrum) and software (ScrumWorks Pro), project selection, layout
of physical workspace, and use of specific practices. Participants
understood that it was a research project as well as a development
project and were very accepting of constraints and suggestions
from the research side. Programming languages, coding styles,
documentation styles, toolsets, testing practices, etc. were all
potentially manipulable.

However, several nontrivial challenges emerged. First,
simultaneously operating the lab and collecting and analyzing data
requires a kind of doublethink where the researcher must oscillate

between practical and theoretical reflection. This was very
challenging at times, especially when events unfolded rapidly, and
the researcher experienced the desire to stop time long enough to
reflect and write notes. Second, many variables of interest are
available via version control systems and the toolsets that run on
them. However, these toolsets are language specific. As the team
initially used a proprietary XML variant rather than a more
popular language (e.g., Java, C++), the lack of available tools
hindered quantitative data collection. The team later switched to a
popular object-oriented language, intending to purchase an
integrated infrastructure including everything from version control
to project management and hosting, preferably with good
integration across tools. For example, the backlog items in the
project management system should be tied to related code
fragments in the version control system. This revealed a third
challenge: despite intense interest in cloud-based systems, the
kind of turnkey solution we hoped for remains elusive.

5. DISCUSSION AND CONCLUSION
This paper proposes Lab-based Action Design Research, a
research methodology where an artifact is concurrently
constructed in a lab setting and evaluated in an organizational
setting. The core contribution of this paper is the description of
LADR and its seven principles – attract funding with a win-win
scenario; select inspiring projects; conduct simultaneous studies;
mix methods; use quasi-experimental designs; use enterprise-level
technical infrastructure; use project management infrastructure.

LADR manifests at least three benefits. First, it permits more
realistic projects, in terms of size, complexity and inclusion of
problem framing, than conventional lab studies. Second, it
facilitates greater control and internal validity than conventional
field research. Third, it allows researchers to simultaneously run
multiple studies, including organization interventions, building
innovative artifacts and studying design practice.

However, LADR is limited in several ways. First, it requires
moderate funding to cover the costs of participant salaries.
Second, having a control group or multiple treatment groups is
financial impractical and methodologically problematic. Third,
simultaneously participating in and analyzing the results is
challenging. Researchers can mitigate these limitations by making
a case for funding to their universities, using longitudinal quasi-
experimental designs coupled with time-series analysis and
recruiting PhD students or other partners for team-based research.

More research is needed to explore LADR’s methodological
properties and implications, to establish its usefulness and to
produce additional guidance. This paper meanwhile describes
LADR in the hope that it may be beneficial to others struggling
with the limitations of contemporary research methods.

Finally, my experience developing LADR has reconfirmed the
maxim that not everything that is measurable is important and not
everything that is important is measurable. We lack good
measures of software project success, although its dimensions are
becoming more clear [15]. We also lack good measures of
productivity, or even work done. Existing measures of work and
software quality were unhelpful with LADR. In conclusions, the
lack of meaningful measures for key variable remains a crucial
challenge for future work involving LADR and for empirical
software engineering research in general.

6. ACKNOWLEDGMENTS
Thanks are due to all of the Lancaster staff who made this project
possible (especially Jon Gallagher) and to all of the participants of
the Lancaster Design Practice Lab. This research was funded by
Lancaster University.

7. REFERENCES
[1] Ambler, S. 2010. 2010 Agile project success rates survey

results. Ambysoft. http://www.ambysoft.com/surveys/
agileSuccess2010.html, (2010).

[2] Anderson, P. 1999. Complexity Theory and Organization
Science. Organization Science. 10, 3 (1999), 216–232.

[3] Beck, K. 2005. Extreme Programming eXplained: Embrace
Change. Addison Wesley.

[4] Cardozo, E., Neto, J., Barza, A., França, A. and da Silva, F.
2010. SCRUM and Productivity in Software Projects: A
Systematic Literature Review. Proceedings of the 14th
International Conference on Evaluation and Assessment in
Software Engineering (EASE).

[5] Checkland, P. and Holwell, S. 1998. Action Research: Its
Nature and Validity. Systemic Practice and Action Research.
11, 1 (1998), 9–21.

[6] Dyba, T. and Dingsøyr, T. 2008. Empirical studies of agile
software development: A systematic review. Information and
Software Technology. 50, 9-10 (2008), 833–859.

[7] Glass, R.L., Vessey, I. and Ramesh, V. 2002. Research in
software engineering: an analysis of the literature.
Information and Software Technology. 44, 8 (Jun. 2002),
491–506.

[8] Hevner, A. and Chatterjee, S. 2010. Design Research in
Information Systems: Theory and Practice. Springer.

[9] Hevner, A., March, S.T., Park, J. and Ram, S. 2004. Design
Science in Information Systems Research. MIS Quarterly.
28, 1 (Mar. 2004), 75–105.

[10] Kampenes, V.B., Dyba, T., Hannay, J.E. and Sjøberg,
D.I.K.I.K. 2009. A systematic review of quasi-experiments in
software engineering. Information and Software Technology.
51, 1 (Jan. 2009), 71–82.

[11] Lee, A.S. and Baskerville, R.L. 2003. Generalizing
generalizability in information systems research. Information
Systems Research. 14, 3 (2003), 221–243.

[12] McKay, J. and Marshall, P. 2001. The dual imperatives of
action research. Information Technology & People. 14, 1
(2001), 46–59.

[13] Poppendieck, M. and Poppendieck, T. 2003. Lean Software
Development: An Agile Toolkit. Addison-Wesley
Professional.

[14] Ralph, P. 2013. The Sensemaking-Coevolution-
Implementation Theory of Software Design. arXiv:
1302.4061 [cs.SE].

[15] Ralph, P., & Kelly, P. 2014. The Dimensions of Software
Engineering Success. Proceedings of the 2014 International
Conference on Software Engineering. ACM.

[16] Schwaber, K. 2004. Agile Project Management with Scrum.
Microsoft Press.

[17] Sein, M., Henfridsson, O., Purao, S., Rossi, M. and Lindgren,
R. 2011. Action Design Research. MIS Quarterly. 35, 1
(2011), 37–56.

[18] Van de Ven, A.H. 2007. Engaged Scholarship: a Guide for
Organizational and Social Research. Oxford University
Press.

[19] Zelkowitz, M.V. and Wallace, D. 1997. Experimental
Validation in Software Engineering. Information and
Software Technology. 39, 11 (1997), 735–743.

