
Sensemaking-Coevolution-Implementation Theory
A Model of the Software Engineering Process in Practice

Paul Ralph
Department of Management Science

Lancaster University
Lancaster, UK

paul@paulralph.name

Abstract—Sensemaking-Coevolution-Implementation Theory is
a teleological process theory of the practice of designing
complex software systems. It posits that an independent agent
(design team) creates a software system by alternating between
its three titular activities. Its veracity has been demonstrated
using questionnaire and case-study methods. It has been used
to evaluate software engineering curricula and highlight
deficiencies in software engineering methods and practices.

Keywords-SCI Theory; process theory; design; coevolution

I. SCI THEORY

Theories of the software engineering (SE) process have
historically been dominated by stage-gate or lifecycle
models, beginning with the Waterfall Model [1]. This was
followed by a “methodology era”, during which SE was
usually conceptualized through a methods lens, and a “post-
methodology era” where methods continued to dominate
conceptualization of SE despite their decreasing relevance to
practice [2]. These lifecycle models and the methods based
on them are fundamentally misleading due to their
empirically debunked assumptions [3], [4].

Sensemaking-Coevolution-Implementation Theory
(SCI) was developed as an alternative to lifecycle models of
SE [5]. It is based on Alexander’s model of the
“selfconscious” design process [6], reflection-in-action [7],
and theorizing of coevolution by [8] among others. SCI
(Figure 1, Table 1) posits that where a complex software
system is developed by an independent, goal-oriented agent,
that agent will engage in three basic processes –
Sensemaking, Coevolution and Implementation – in a self-
directed sequence.

The agent may be an individual or team. The arrows in
Figure 1 indicate relationships between concepts and
activities, not sequence – the agent may transition between
activities in any order. In a typical project, Sensemaking may
include interviewing stakeholders, writing notes, organizing
notes, reading about the domain, reading about technologies
that could be used in project, sharing insights among team
members and acceptance testing (getting feedback from
stakeholders on prototypes). Implementation may include
coding, managing the codebase, writing documentation,
automated testing, creating unit tests, running unit tests and
debugging.

While Coevolution does not directly map to a variety of
well-known software engineering activities, it is observable
in real projects. For example, when a team stands around a
whiteboard drawing informal models and discussing how to
proceed, they often oscillate between ideas about the design

object (e.g., ‘how should we distribute features between the
partner channel screen and the partner program screen?’) and
the context (e.g., ‘you know what, I think channels and
programs are just different names for the same thing.’). This
mutual exploration of context and design object is
Coevolution. Coevolution may occur in planning meetings
and design meetings, following breakdowns or during an
individual’s internal reflection.

Evolution and coevolution are easily confused. In design
literature, evolution, specifically evolutionary prototyping,
denotes the gradual improvement of a software object. In
contrast, coevolution refers to “developing and refining
together both the formulation of a problem and ideas for a
solution, with constant iteration of analysis, synthesis and
evaluation processes between the … problem space and
solution space” {Dorst:2001tq, p. 434}. SCI therefore
distinguishes between two types of iteration – coevolution
denotes simultaneously revising ideas of problem and
solution within minutes or hours, while evolution denotes
improving software artifacts over weeks and months.

SCI is a teleological process theory, intended to explain
how software is developed in practice. Van de Ven [9]
distinguishes two types of theories – variance theories
explain the causes of consequences of something and often
specify the relative contribution of multiple antecedents,
while process theories explain how and why an entity
changes and develops. Process theories come in at least four
types [10]: lifecycle theories posit that an entity progresses
through a series of stages in a predefined sequence;
evolutionary theories posit a population of entities that
changes as less fit entities expire and remaining entities
change and recombine; dialectic theories posit that changes
result from shifts in power among conflicting entities;
teleological theories posit an agent who purposefully selects
and takes actions to achieve a goal. SCI therefore takes a
teleological approach to causality: software artifacts change
as human beings (having free will) choose to change them.
This differs from the probabilistic approach to causality
adopted by many variance theories.

A survey [11] of over 1300 software development
professionals found that SCI better described their processes
than either Waterfall or an alternative SE process theory, the
Function-Behavior-Structure Framework (FBS) [12].
Emerging evidence from an ethnographic study of an
English software development team also supports SCI’s core
claims and the impossibility of understanding conventional
SE through Waterfall or FBS. SCI has been used to analyze
SE curricula [13]. It can also be used to analyze design

methods and practices, and to teach SE and project
management.

REFERENCES
[1] W. Royce, “Managing the development of large software systems,”

presented at the Proceedings of WESCON, the Western Electronic
Show and Convention, Los Angeles, USA, 1970.

[2] D. Avison and G. Fitzgerald, “Where Now for Development
Methodologies,” Communications of the ACM, vol. 46, no. 1, pp. 79–
82, 2003.

[3] F. P. Brooks, The Design of Design: Essays from a Computer
Scientist. Addison-Wesley Professional, 2010.

[4] P. Ralph, “Introducing an Empirical Model of Design,” in
Proceedings of The 6th Mediterranean Conference on Information
Systems, Limassol, Cyprus, 2011.

[5] P. Ralph, “The Sensemaking-Coevolution-Implementation Theory of
Software Design,” MIS Quarterly, under review.

[6] C. W. Alexander, Notes on the synthesis of form. Harvard University
Press, 1964.

[7] D. A. Schön, The reflective practitioner: how professionals think in
action. USA: Basic Books, 1983.

[8] N. Cross, “Research in Design Thinking,” in Research in design
thinking, N. Cross, K. Dorst, and N. Roozenburg, Eds. Delft,
Netherlands: Delft University Press, 1992.

[9] A. H. Van de Ven, Engaged scholarship: a guide for organizational
and social research. Oxford, UK: Oxford University Press, 2007.

[10] A. H. Van de Ven and M. S. Poole, “Explaining development and
change in organizations,” The Academy of Management Review, vol.
20, no. 3, pp. 510–540, Jul. 1995.

[11] P. Ralph, “Comparing Two Software Design Process Theories,” in
Proceedings of the Fifth International Design Science Research in
Information Systems and Technology Conference, St. Gallen,
Switzerland, 2010, vol. 6105, pp. 139–153.

[12]   J. S. Gero and U. Kannengiesser, “An ontological model of emergent
design in software engineering,” presented at the 16th International
Conference on Engineering Design, Paris, France, 2007.

[13] P. Ralph, “Improving coverage of design in information systems
education,” in Proceedings of the 2012 International Conference on
Information Systems, Orlando, FL, USA, 2012.

Mental
Picture of
Context

Sensemaking

Goals

Design Agent

Mental Picture
of Design

Object

Implementation

Design Object

Primitives

Coevolution

Context

Constraints

Input
Output
Composition
Executes
Unbounded Entity

Object

Mental Entity

Activity

Key

Figure 1. Example of a TWO-COLUMN figure caption: (a) this is the format for referencing parts of a figure.

Concept / Activity Meaning

Constraints the set of restrictions on the design object’s properties
Design Agent an entity or group of entities capable of forming intentions and goals and taking actions to achieve those goals

and that specifies the structural properties of the design object
Context the totality of the surroundings of the design object and agent, including the object’s intended domain of

deployment
Design Object the thing being designed

Goals optative statements about the effects the design object should have on its environment
Mental Picture of Context the collection of all of the design agent’s beliefs about its and the design object’s environments

Mental Picture of Design Object the collection of all of the design agent’s beliefs about the design object
Primitives the set of entities from which the design object may be composed

Sensemaking the process where the design agent organizes and assigns meaning to its perception of the context, creating and
refining the mental picture of context

Coevolution the process where the design agent simultaneously refines its mental picture of the design object, based on its
mental picture of context, and the inverse

Implementation the process where the design agent generates or updates the design object using its mental picture of the design
object

TABLE I. CONCEPTS AND RELATIONSHIPS OF SCI THEORY, DEFINED

