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Abstract
The dominant view of design in information systems and software engineering, the Rational Model, 
views design and engineering as a methodical, plan-centered, approximately rational process of 
optimizing a design candidate for known constraints and objectives. It persists despite extensive 
empirical evidence that it does not reflect design practice and no evidence that attempts to adopt 
rationalistic processes improve outcomes.  One reason for its resilience against empirical critique may 
be the lack of a comprehensive alternative. This paper addresses this gap by enumerating the Rational 
Model’s components and proposing a comprehensive, better-supported alternative, an “Empirical 
Model of Design”. The Empirical Model is intended to replace the Rational Model as a foundation for 
design methods and practices, design education and design science research.
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1 INTRODUCTION 

Brooks (2010) attacked the assumptions underlying “The Rational Model of Design”, the dominant 
view of design in information systems (IS) and software engineering (SE), which views design and 
engineering as a methodical, plan-centered, approximately rational process of optimizing a design 
candidate for known constraints and objectives. His most compelling criticism was that  empirical 
research does not  support  this view (e.g., Cross et  al. 1992, Truex et al. 2000, Ralph 2010a, Checkland 
1999, Bansler and Bødker 1993, Zheng et al. 2011). Despite this evidence, the Rational Model 
continues to exert  substantial influence in scientific and popular discourse surrounding design in IS 
and SE, as displayed in the design science approach (Hevner et  al. 2004), textbooks (e.g., Laudon et 
al. 2009, Kroenke et  al. 2010), standards (e.g., IEEE 1998), official body of knowledge compilations 
(e.g., Bourque and Dupuis 2004), Wikipedia articles1, modern design methods (Jacobson et  al. 1999) 
and even the popular conception of the scientific process (e.g., Yin 2003, Campbell and Stanley 1963, 
Trochim 2001). 
The Rational Model’s continued dominance is unsurprising. It  came first. It  has intuitively appealing 
characteristics including modeling design as search, satisficing instead of optimizing, and viewing 
professionals as rational actors executing reliable plans. Furthermore, a host  of social and cognitive 
factors including the validity effect (Renner 2004) and status quo bias (Samuelson and Zeckhauser 
1988) inhibit shifts to alternative models. Moreover, no comprehensive alternative to the Rational 
Model is available, which motivates this paper. 

Purpose: The purpose of this paper is to explicate the meaning of The Rational Model of 
Design and to propose a comprehensive alternative. 

Software design science includes a minimum of two research streams (Hevner and Chatterjee 2010) – 
1) a research method where knowledge is gained by building innovative artifacts (Hevner et al. 2004) 
and 2) “the philosophical, theoretical and empirical study of software creation and modification 
including its phenomenology, methodology and causality” (Ralph 2010b, p. ii). The paper contributes 
to the latter by organizing alternatives to elements of the Rational Model into an “Empirical Model of 
Design” (§2). Section 3 summarizes empirical evidence concerning both models, followed by a 
discussion of the effects of the Rational Model’s dominance (§4). The paper concludes with a 
summary of its contributions and remaining questions (§5).

2  THE RATIONAL MEMEPLEX AND ITS ALTERNATIVE

The dominant  view of design has been called “Technical Problem-Solving” (Schön 1983), the 
“Reason-Centric Perspective” (Ralph 2010b) and the “Rational Model” (Brooks 2010). This paper 
adopts “Rational Model” as it conveys not only its rationalist epistemology (§2.2) but  also its rational 
designer and process assumptions. 
As the Rational Model is both multifaceted and socially constructed, various thinkers may disagree on 
its nature, hindering unequivocal definition. Therefore, this paper analyzes the Rational Model using 
mimetics, the study of memes. Dawkins (1989) coined the term “meme” as a “noun that  conveys the 
idea of a unit of cultural transmission, or a unit of imitation” (p. 192). In this view, memes include 
beliefs, theories, methods, models, philosophies and best practices. Memes may interact, e.g., a 
rationalist  philosophy justifies analytical evaluation methods. Several mutually-reinforcing memes 
form a complex of memes or “memeplex”. By conceptualizing the Rational Model as a memeplex it 
may be defined by its component memes and their interactions. 

2.1 Rational Memes and Alternatives.

Rationalism vs. Empiricism. Brooks (2010) argues that  the Rational Model rests on the philosophy of 
rationalism. Broadly speaking, rationalism is the belief that  knowledge derives from reason and 

1 At the time of writing, Wikipedia’s ubiquitous “Software Development Process Template” sidebar listed eight “Activities 
and Steps” including “Requirements”, “Design”, “Implementation” and “Testing”. 
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intuition, in contrast  to empiricism, the view that  knowledge is primarily derived from sensory 
experience (Markie 2008). Empiricism is the basis of popular epistemologies including critical 
realism, social constructivism, falsificationism and logical positivism.
Technical Problem-Solving vs. Reflection-in-Action. The foundations of the Rational Model were 
independently developed in computer science by Herbert  Simon, Allen Newell and their collaborators 
(cf., Newell and Simon 1972, Simon 1996) and engineering by Gerhard Pahl, Wolfgang Beitz and 
their collaborators (cf., Pahl and Beitz 1996). Design professionals are modeled as rational agents 
attempting to optimize a design candidate for known constraints and objectives. Where the problem 
space is so large that  finding an optimal solution is beyond the designer’s limited processing power, 
the designer will “satisfice” or “find decisions that  are good ‘enough’” using heuristic search (Simon 
1996, p. 27). Simon coins the term “procedural rationality” for this “finding a way of calculating, very 
approximately, where a good course of action lies” (p. 27), thereby differentiating a (boundedly) 
rational action from rational outcomes. Schön (1983) called this paradigm “Technical Problem-
Solving” (TP-S). TP-S exhibits rationalism in assuming that  designers are capable of evaluating the 
effects of decisions by inspection and that good processes produce good systems.
Building on empirical studies of professional practice, Schön (1983) devised an alternative to TP-S –
Reflection-in-Action (RiA). RiA models design as a reflective conversation between the designer and 
the situation. The designer alternates between framing (conceptualizing the problem), making moves 
(where a move is a real or simulated action intended to improve the situation) and evaluating those 
moves. Multiple agents may collectively reflect  in action using boundary objects (Levina 2005). 
(Boundary objects, including diagrams and prototypes, are simultaneously robust enough to maintain 
their identities and flexible enough to serve multiple parties). Reflection-in-Action differs from 
Technical Problem-Solving in many ways, e.g., professionals respond to a problematic situation 
(rather than a given problem) with many possible interpretations and form and explore hypothesis 
about potentially beneficial actions (rather than optimizing or satisficing design candidates). RiA is 
consistent with empiricism in assuming that  the problem and solution are coconstructed by reflecting 
on observations and simulations.
Planning vs. Ethnomethodoligcal views of Human Action. The “planning model of cognitive science ... 
posits that action is a form of problem solving,” and that “the plan is prerequisite to the 
action” (Suchman 1987, p. 28-29). This ‘cognitivist view’ is consistent  with Rationalism in two senses 
– 1) designing an artifact requires a substantial planning phase as seen in plan-driven methods and 2) 
designing is itself planning – a design is a plan for building an artifact. In contrast, the 
“ethnomethodological view” (EV) of action posits that  “the organization of situated action is an 
emergent  property of moment-by-moment interactions between actors, and between actors and the 
environments of their action” (Suchman 1987, p. 179) while “plans are representations, or abstractions 
over action” (p. 186). This is consistent with Empiricism in that  design is seen as an interaction 
between an actor and its environment; a design project  is seen as a system of inquiry where the 
designer searches for the right solution by building artifacts in the world rather than planning them in 
the mind.
SDLC vs. SCI. Another key feature of the Rational Model is The Systems Development Lifecycle 
(SDLC). Although SDLC (Figure 1) was initially presented as a method (Royce 1970), many treat it as 
a lifecycle process theory – an explanation of how and why an entity changes and develops according 
to a prefigured, unitary sequence of phases (Van de Ven and Poole 1995). For example, Fitzgerald 
(2006) states that “in conventional software development, the development  lifecycle in its most 
generic form comprises four broad phases: planning, analysis, design, and implementation” (p. 3). 
Similarly, Ewusi-Mensah (2003) says that  “regardless of the particular process model … every 
software project  will feature: (1) the requirements-definition and functional-specification phase; (2) 
the design phase; … (3) the implementation; … and (4) the installation, operation, and maintenance 
phase” (p. 51). Additionally, Laudon et al. (2009) state that  “systems development … consist[s] of 
systems analysis, systems design, programming, testing, conversion and production and maintenance 
… which usually take place in sequential order”. Moreover, traditional SDLC phases are explicitly 
adopted by the IEEE Guide to the Software Engineering Body of Knowledge (Bourque and Dupuis 
2004).
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Fig. 1.  SDLC (adapted from Royce 1970). Solid lines indicate the original, no-backtracking 
version. Solid lines plus dashed lines show the original version with backtracking. 
Solid, dashed and dotted lines indicate the clique version (see below).

SDLC has been criticized for many years (cf., Royce 1970, McCracken and Jackson 1982, Gladden 
1982, Boehm 1988, Brooks 2010, Beck 2005). However, most criticism concerns the order of 
activities rather than their conceptual separation; e.g., Royce (1970) argued that leaving testing to the 
end of the lifecycle would increase risk (§2.5). Many of these criticisms therefore may be avoided by 
redefining SDLC as a clique (Figure 1), i.e., adding all possible phase transitions. This re-
conceptualization reveals the fundamental premise of SDLC – analysis, design, coding and testing are 
temporally and conceptually separable. This is consistent with Rationalism as separating design from 
implementation assumes that the designer is capable of determining which type of system to build and 
approximately how it will work by reasoning. 

An alternative to SDLC is Sensemaking-Coevolution-Implementation Theory (SCI). SCI (Ralph 
2010b) is a teleological process theory, an explanation of how and why an entity changes where 
change is manifested by a goal-seeking agent engaging in activities in a self-determined sequence 
(Ralph 2010b, Van de Ven and Poole 1995). The core claim of SCI is that complex software systems 
are produced primarily through its three titular activities. SCI is consistent with empiricism in that  the 
design agent explicitly gains knowledge through sense experience (sensemaking).
SCI (Figure 2, Table 1) describes the process where an agent designs a complex system. The agent 
may be an individual or team. The arrows in Fig. 2 indicate relationships between concepts and 
activities, not the sequence of activities. Since implementation depends on the Mental Picture of the 
Design Object, which is initially generated by the coevolution process, some coevolution must precede 
implementation. By equivalent logic, some sensemaking must precede coevolution. However, once the 
two mental pictures are initially formed, the agent  may transition between activities in any order. One 
possible sequence would be as follows. The design agent  begins the project by perceiving its 
environment  and the environment where the design object is intended to operate. Organizing its 
perceptions, the agent forms a mental picture of the context, including some tentative goals and 
constraints. Based on this, the agent formulates some beliefs about  one or more possible design 
objects. It then iterates between these two sets of beliefs, refinements of one triggering reframing of 
the other and the inverse (the inner iterative loop). The agent may externalize its cognition in boundary 
objects including conceptual models, design models, mockups and prototypes. Eventually the agent 
begins to build the design object (or perhaps to convert  an existing prototype into the design object). 
The design object’s existence then changes the context, which triggers further sensemaking, and so 
forth (the outer iterative loop). Testing would therefore mostly involve the outer loop. 
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Fig. 2. Sensemaking-Coevolution-Implementation Theory (from Ralph 2010a)

Concept / Activity Meaning

Constraints the set of restrictions on the design object’s properties
Design Agent an entity or group of entities capable of forming intentions and goals and taking actions to 

achieve those goals and that specifies the structural properties of the design object
Design Object’s Environment the totality of the surroundings where the design object exists or is intended to exist
Design Agent’s Environment the totality of the surroundings of the design agent
Design Object the thing being designed
Goals optative statements about the effects the design object should have on its environment
Mental Picture of Context the collection of all of the design agent’s beliefs about its and the design object’s 

environments
Mental Picture of Design Object the collection of all of the design agent’s beliefs about the design object
Primitives the set of entities from which the design object may be composed
Sensemaking the process where the design agent perceives its and the design object’s environments and 

organizes these perceptions to create or to refine the mental picture of context
Coevolution the process where the design agent simultaneously refines its mental picture of the design 

object, based on its mental picture of context, and the inverse
Implementation the process where the design agent generates or updates the design object using its mental 

picture of the design object

Table 1.  SCI Theory Concepts and Relationships (adapted from Ralph 2010a)

System  Development Methods (SDMs). Many modern SDMs still retain SDLC’s basic structure. For 
example, Extreme Programming (Beck 2005) involves running through SDLC phases in linear, time-
boxed iterations (Figure 3), while the Unified Software Process (USP) (Jacobson et al. 1999) adopts 
them as parallel “disciplines” within an alternative phase model (Figure 4). Even Boehm’s (1988) 
spiral model is just SDLC reorganized into a spiral with added risk analysis. However, modern SDMs 
are often characterized according to their degree of planning and analysis. 
Plan-driven methods including Waterfall and USP and are often contrasted with Agile methods (Beck 
et  al. 2001) including Extreme Programming (Beck 2005), Lean (Poppendieck and Poppendieck 2003) 
and Boomerang (Stacey and Nandhakumar 2008). However, a starker contrast is available in the form 



of amethodical development. “Amethodical systems building implies management  and orchestration 
of systems development  without a predefined sequence, control, rationality, or claims to universality. 
An amethodical development  activity is so unique and unpredictable ... that even the criteria of 
contingent development methods are irrelevant” (Truex et al. 2000, p. 54).

Fig. 3. XP’s “Pull Model of 
Development” (Beck 2005)

Fig. 4. Unified Software Process Phase Model (adapted from 
Wikimedia Commons)

Like SDLC, plan-driven methods are consistent with Rationalism in their separation of design from 
coding and focus on ensuring outcome quality through good plans and processes. Analogously, 
amethodical development, with its unpredictability and focus on improvised action, is clearly more 
consistent with Empiricism. In contrast, Agile methods may combine rationalist and empiricist 
elements. For example, Extreme Programming prescribes both separating planning, analysis, design 
and coding (rationalist) and keeping a user near the development team for questioning (empiricist). 
Project Management Frameworks (PMFs). While a software design method conveys advice for 
designing and building software, a software project management  framework conveys advice for 
organizing the software creation enterprise (e.g., distributing and scheduling tasks, types of meetings). 
USP (above) is both an SDM and a PMF as it contains advice for both designing (e.g., ‘organize code 
into components’) and organizing the project (e.g., ‘create an executable architecture during the 
elaboration phase’) (Jacobson et  al. 1999). As a PMF, USP is consistent  with rationalism in its 
organization of the design project as separate disciplines named after SDLC phases. 
Scrum (Schwaber and Beedle 2001) is an alternative PMF commonly combined with Agile SDMs. 
Scrum comprises a set of recommended roles, artifacts meetings and practices for developing software 
in time-boxed iterations called sprints but  no phases or disciplines; rather, work is organized into time-
boxed ‘sprints’, each producing a shippable product  increment. Scrum’s consistency with empiricism 
is evident  in its lightweight planning and explicit  focus on continual interaction with external 
stakeholders.

2.2 Defining the Rational and Empirical Models of Design

The previous section identified various elements (memes) related to software design and consistent 
with rationalism. Many of these are interconnected. TP-S rests on the assumption that  “a physical 
symbol system … has the necessary and sufficient means for general intelligent  action” (Simon 1996, 
p. 23). More specifically, intelligent agents model their environments and possible actions using 
symbol structures; “hence the programs that  govern the behavior of a symbol system can be stored, 
along with other symbol structures, in the system's own memory, and executed when 
activated” (Simon 1996, p. 22). This is equivalent to the planning model of cognitive science. The 
centrality of plans also manifests in SDLC as both the project  plan and the design specification (as a 
construction plan). Like SDLC, TP-S clearly separates phases with design beginning with known 
constraints and objectives and producing a plan for an artifact rather than the artifact itself. Plan-
driven methods likewise seek to ensure outcomes through planning and process, and separate design 
from other phases. SDLC, TP-S and plan-driven methods are all intensely methodical. 
Meanwhile, many of the alternatives identified above are also interconnected. RiA is motivated by 
Schön’s (1983) finding that a designer “does not keep means and ends separate, but defines them 



interactively as he frames a problematic situation [and] does not  separate thinking from doing” (p. 69). 
This rejection of planning as the foundation of action is central to EV and reframes design as an 
improvised interaction between an actor and its environment. SCI is explicitly informed by RiA 
(Ralph 2010b) and enshrines both the actor/environment interaction and the actor’s ability to choose 
its own path. Agile methods, like SCI, focus on producing code rather than plans, however, SCI and 
RiA are consistent with entirely amethodical development with neither assuming a structured process. 
Moreover, as Scrum’s planning is mostly just choosing the current  sprint’s goal and distributing work, 
the plan is an abstraction over action, as in EV. Scrum’s explicit  focus on interaction with external 
stakeholders is broadly consistent  with SCI and Agile methods. Additionally, Scrum explicitly 
encourage reflection in action through its retrospective meetings.
Organizing design-related memes around their epistemological underpinnings facilitates definitions 
for The Rational Model of Design and an alternative as follows. I call this alternative “The Empirical 
Model of Design” not only as it  posits that designers approach projects as empirical inquiries but also 
to remind us of its grounding in empirical observation (§3). Table 2 summarizes the models. 

The Rational Model of Design: a collection of interconnected design-related memes with 
a rationalist epistemology including Technical Problem-Solving, the Systems 
Development Lifecycle, plan-driven development methods, and their assumptions.
The Empirical Model of Design: a collection of interconnected design-related memes 
with an empiricist  epistemology including Reflection-in-Action, Sensemaking-
Coevolution-Implementation Theory, amethodical development, and their assumptions.

Dimension Rational Model Empirical Model References

Philosophy Rationalism Empiricism (Markie 2008)

Design 
Paradigm

Technical Problem-
Solving

Reflection-in-Action (Schön 1983, Simon 1996, Checkland 1999)

Theory of Action Plan-Centred Ethnomethodological (Suchman 1987)
Process Theories FBS, Basic Design 

Cycle, SDLC, USP
SCI Theory, 
Selfconscious Process

(Gero 1990, Roozenburg and Eekels 1995, 
Royce 1970, Ralph 2010b, Alexander 1964, 
Jacobson et al. 1999)

Methodicalness Methodical Amethodical (Truex et al. 2000)
SDMs, PMFs, 
etc.

FBS, SDLC, USP, 
Spiral Model

Scrum, Extreme 
Programming, Lean

(Royce 1970, Jacobson et al. 1999, Boehm 
1988, Beck 2005, Schwaber 2004, Poppendieck 
and Poppendieck 2003, Gero 1990)

Table 2.  Components of the Rational and Empirical Models 

3 THE JURY IS IN

The above elucidation of the Rational and Empirical models raises many questions – can the model 
elements be empirically tested? are some elements superior to others? does one model better reflect 
software development practice overall? The answer to all three questions is “yes” and substantial 
empirical study has already been done.
Concerning TP-S and RiA, Schön (1983) and Cross et al. (1992) explicitly found that  real designers do 
not operate according to TP-S. The core TP-S assumption that problems are known, unambiguous, and 
agreed is incommensurate with empirical evidence of goal conflict  in design projects (cf., Checkland 
1999). Instead, Schön (1983) found that a designer “does not  keep means and ends separate, but 
defines them interactively as he frames a problematic situation. He does not separate thinking from 
doing” (p. 69). RiA is explicitly based on this empirical foundation provided by Schön’s (1983) case 
studies. This was later extended for team design (see Levina 2005 for discussion of Collective RiA).
Concerning theories of human action, Suchman (1987)’s comprehensive comparison of EV and the 
plan-centered view concludes that action is inherently improvised, consistent  with EV. In software 



development  specifically, Zheng et  al. (2011) show how “collective agility” in a large project  was 
enacted through improvisational behavior under minimal strategic planning.
Concerning process theories, a survey of more than 1400 software developers (Ralph 2010a) found 
that SCI more accurately represented software development than SDLC or the Function-Behavior-
Structure Framework (FBS) (Gero 1990), another rationalist design process theory. 
Concerning the methodicalness of development, Nandhakumar and Avison (1999) found that 
“traditional [information systems] development  methodologies are treated primarily as a necessary 
fiction to present an image of control or to provide a symbolic status, and are too mechanistic to be of 
much use in the detailed, day-to-day organization of systems developers' activities” (p. 176). 
Baskerville et al. (1992, 2004) similarly found evidence of amethodical systems development in 
several case studies of software developers. Truex et  al. (2000) summarized the argument by 
suggesting that “methods [are] merely unattainable ideals and hypothetical ‘straw men’ that  provide 
normative guidance to utopian development situations” (p. 53).
Concerning SDMs, research by The Standish Group (2006) found that the shift  from Waterfall to Agile 
methods has driven the reduction in project failure since the original Chaos Report. Concerning PMFs, 
a meta-analysis of empirical studies of Scrum teams concluded that introducing Scrum is associated 
with higher productivity and customer satisfaction (Cardozo et al. 2010). 
The above summary may appear biased toward the Empirical Model. However, an extensive search 
using Academic Search Premier and Google Scholar using Query 1 produced only one study 
supporting a Rational-Model element. Palvia and Nosek (1990) evaluated SDLC against a prototyping 
methodology using a survey; however, it explicitly assumed that  SDLC describes all software 
development, creating a circular argument. 

Query 1: (“Waterfall Model” OR SDLC) AND (experiment OR “laboratory study” OR 
“case study” OR “field study” OR survey OR “variance model” or “econometric 
analysis”)

While it may appear incredulous that  the dominant view of design lacks empirical support, it  is worth 
remembering that Simon (1996) provided no empirical support for TP-S; Royce (1970) specifically 
said the Waterfall Model “has never worked” (p. 335); Gero (1990) provided no empirical support for 
FBS; and Rationalism as a basis for science fell out  of fashion with Kant’s Critique of Pure Reason. 
Meanwhile RiA, SCI and amethodical development were all developed based on empirical 
observations. In conclusion, notwithstanding that existing evidence is incomplete and imperfect, the 
balance of evidence supports the Empirical Model.

4 DISCUSSION

In addition to the components discussed above, the Rational Model makes several key assumptions – 
1) design projects begin with known, unambiguous, agreed goals (cf., Schön 1983); 2) “design” occurs 
after analysis and before implementation (cf., Schön 1983); 3) the solution space is bounded and 
conceptually navigable (cf., Brooks 2010); 4) the system being designed is simple, i.e., its properties 
are predictable from its components (cf. Gero 1990 on predicted behavior). Neither Simon (1996) nor 
Pahl and Beitz (1996) clearly state these assumptions. 
Brooks (2010) attacked the Rational Model on multifarious grounds including – 1) “We don't really 
know the goal when we start” (p. 22); 2) The desiderata and constraints keep changing; and 3) the 
designer cannot  explore the tree of design decisions as it  is never fully understood and the impacts of 
individual decisions cannot  be determined without following them through to complete designs. He 
thereby joins a chorus of conceptual excoriation of the Rational Model and related concepts (e.g., 
McCracken and Jackson 1982, Gladden 1982, Truex et al. 2000, Nandhakumar and Avison 1999).
Following this, the Empirical Model makes opposing assumptions – 1) design projects involve 
multiple stakeholders having poorly-understood, ambiguous, conflicting goals (Checkland 1999, 
Schön 1983, Brown et  al. 2008); 2) “design encompasses all the activities involved in conceptualizing, 
framing, implementing, commissioning, and ultimately modifying complex systems” (Freeman and 



Hart 2004, p. 20); 3) the solution space is unbounded; and 4) the system being designed is complex, 
i.e., it exhibits properties not predictable from its constituent parts (cf., Waldrop 1992). 
As mentioned in the introduction, support  for the Rational Model is not  surprising. This discussion is 
not intended to insult those who accepted the Rational Model in the past  (as the author did) but  to 
reveal the harm of continuing to do so. The Rational model is not wrong; it  is simply misapplied where 
its assumptions do not hold and this misapplication creates specific, observable problems. 
In real-world design projects, for example, developers are unable to make reliable time and cost 
estimates as they neither conceptualize their work through detailed plans nor have sufficient 
information about  the problem to accurately estimate its solution’s difficulty (Ralph and Wand 2009). 
This creates tension with managers attempting to drive projects through cost estimates (Beck 2005) 
and is used to justify contracting development with fixed price / fixed schedule contracts, thereby 
increasing overall project risks (Brooks 2010). Furthermore, Rational-Model thinking encourages 
focusing on an oversimplified “given” problem (e.g., USP’s focus on use cases) instead of multiple 
stakeholders having poorly-understood, ambiguous, conflicting goals (cf., Checkland 1999). 
Similarly, unfounded adherence to the Rational Model affects design research in at  least two ways. 
First, the design science research approach, as formulated by Hevner et al. (2004), was heavily 
influenced by TP-S (Hevner et al. cite Simon 13 times). It  conceptualizes “the design science 
paradigm” as “fundamentally a problem-solving paradigm” (p. 76), marginalizing the crucial interplay 
between problem framing and problem solving at the heart  of RiA. Furthermore, it recommends that 
researchers “Design as a search process” (p. 83), following Simon’s model of design as heuristic 
search. However, empirical evidence reveals that designers do not  design as a search process (Schön 
1983, Cross et  al. 1992) as designers rarely have sufficient  information to navigate the tree of design 
decisions (Brooks 2010). 
Second, many design scientists are engaged in developing new and improved SDMs and PMFs (i.e., 
method engineering). The Rational Model’s continued dominance has, at least  in part, created a 
research culture that  accepts methods making Rational-Model assumptions despite empirical evidence 
that these assumptions do not hold in practice. For example, the extensive research on goal-oriented 
requirements engineering methods assumes that requirements can be “derived” from stakeholder goals 
(cf., van Lamsweerde 2001). This is based on the Rational-Model assumption of a limited number of 
knowable solutions. Given the opposite, Empirical-Model assumption of an unknown, possibly 
infinite number of solutions, requirements cannot  generally be derived from goals. For example, one 
cannot infer specific requirements from the goal of a virtual learning environment, “to enhance student 
learning”, as there is an unknown number of strategies to achieve this goal, some of which may not 
need any particular “requirement”. The fact  that  proponents of new methods need not produce 
evidence of effectiveness to be taken seriously exacerbates this problem. Not requiring empirical 
evidence supporting SDMs and PMFs is arguably also a manifestation of Rationalism.
Moreover, software engineering courses embracing the Rational Model have become misaligned with 
practice, as expressed by Graham (2003) – “I was taught in college that  one ought to figure out a 
program completely on paper before even going near a computer. I found that  I did not program this 
way … I tended to just  spew out code that  was hopelessly broken, and gradually beat  it into shape.” 
The Rational Model’s influence is evident in the ACM model curricula for software engineering and 
information systems, which cover neither coevolution nor generating design alternatives (Ralph 2011). 
Finally, two certain misconception bears preempting. First, many design-related concepts do not fit 
cleanly in either model. For example, peer programming has no innate epistemology. Second, the 
Rational and Empirical Models are not methods. Software development teams do not adopt one or the 
other of these models, and more than Galapagos finches adopt evolution, natural selection and 
positivism and scientific realism. This is not  a debate between agile and plan-driven methods – 
adopting a plan-driven method is not  akin to adopting the Rational Model. The Rational and Empirical 
models are memeplexes, constructed by the scientific community to conceptualize design work. 
The paper has two primary limitations. First, it  is not  a comprehensive review of every study on ever 
Rational- and Empirical-Model concept. It claims only that a good-faith search for empirical evidence 
supporting the Rational Model found only a dearth of empirical study, while empirical studies 



supporting corresponding Empirical-Model concepts were plentiful. Second, the analysis applies only 
to the software development  domain. The Rational Model may comprise excellent  concepts for 
understanding other design domains (e.g., electrical engineering).

5 CONCLUSION

This paper makes two contributions. First, it  extends Brooks’ (2010) identification of The Rational 
Model of Design by clarifying its meaning, providing a sample of its components and their 
relationships and enumerating its negative effects on research, practice and education. Second, it 
organizes Rational Model alternatives into The Empirical Model of Software Design and summarizes 
the evidence supporting these alternatives. This results in the challenging conclusion that the new 
Empirical Model is superior to the status quo Rational Model.
These contributions have implications for research, practice and teaching. Researchers studying design 
may stop basing surveys, coding schemes and experimental protocols on unsupported Rational-Model 
phases – opting instead for SCI or RiA. Furthermore, the idea of designing through a search processes 
in the design science approach may be revised. Practitioners may use the Empirical Model and its 
supporting evidence to argue against fixed-price, fixed-schedule contracts and SDMs and PMFs based 
on unsupported Rational-Model assumptions. Finally, instructors may replace SDLC, USP and related 
Rational-Model concepts, with SCI Theory, Scrum and other Empirical-Model alternatives in software 
development  and project  management courses. Moreover, it is crucial that software engineering 
education shift  away from toy problems and idealized processes toward ambiguous situations, and 
complex artifacts that emphasize the problem-framing / problem-solving interplay. 
The purpose of this paper is not  to disparage proponents of the Rational Model but to point  out  that the 
status quo should be subject  to the same standard of empirical testing as its alternatives. Following 
this, several avenues of future research are evident. First, direct  empirical comparisons of SDMs, a 
methodologically challenging task, are needed. Second, some descriptive research on the extent to 
which Rational-Model assumptions are met in diverse projects would be beneficial. Finally, the 
components of The Empirical Model may be improved, e.g., SCI Theory may be generalized to 
account for multiple agents pursuing conflicting agendas.
In conclusion, while many have criticized the dominant view of design, such criticisms are of limited 
use when no comprehensive alternative is available. This paper presents a comprehensive alternative, 
clearing the way for a paradigm shift in design research, practice and education.
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